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The pathogenesis of Alzheimer’s disease (AD) is a critical unsolved question; and although recent studies have demonstrated a strong
association between altered brain immune responses and disease progression, the mechanistic cause of neuronal dysfunction and death
is unknown. We have previously described the unique CVN-AD mouse model of AD, in which immune-mediated nitric oxide is lowered
to mimic human levels, resulting in a mouse model that demonstrates the cardinal features of AD, including amyloid deposition,
hyperphosphorylated and aggregated tau, behavioral changes, and age-dependent hippocampal neuronal loss. Using this mouse model,
we studied longitudinal changes in brain immunity in relation to neuronal loss and, contrary to the predominant view that AD pathology
is driven by proinflammatory factors, we find that the pathology in CVN-AD mice is driven by local immune suppression. Areas of
hippocampal neuronal death are associated with the presence of immunosuppressive CD11c � microglia and extracellular arginase,
resulting in arginine catabolism and reduced levels of total brain arginine. Pharmacologic disruption of the arginine utilization pathway
by an inhibitor of arginase and ornithine decarboxylase protected the mice from AD-like pathology and significantly decreased CD11c
expression. Our findings strongly implicate local immune-mediated amino acid catabolism as a novel and potentially critical mechanism
mediating the age-dependent and regional loss of neurons in humans with AD.
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Introduction
Alzheimer’s disease (AD) is a disease of aging associated with the
accumulation of �-amyloid (A�) peptides within the brain pa-
renchyma and cerebral blood vessels and hyperphosphorylated
and aggregated tau within neurons. Although the mechanisms
causing brain atrophy and neuronal loss are unknown, increasing
evidence suggests that immunity plays a critical role in AD patho-
genesis. Genome-wide association studies have linked immune
genes to increased risk for AD (Kamboh et al., 2012). Recently, an
integrated analysis of AD-associated genes demonstrated that AD
neuropathology has the strongest association with changes in
immune and microglial gene networks (Zhang et al., 2013a). De-
spite this, we have not yet identified the specific mechanisms by

which immunity contributes to AD pathogenesis. Although some
studies have demonstrated increased expression of classical pro-
inflammatory mediators in human AD, the inflammatory milieu
also includes immunosuppressive components (Colton et al.,
2006). This immunosuppressive bias is consistent with the
brain’s status as an immune privileged site (Carson et al., 2006;
Mellor and Munn, 2008; Ransohoff and Cardona, 2010), and the
contribution of immunosuppression to neuronal cell loss and
other AD pathology remains largely unexplored.

In mice, transgenic expression of mutated human A� precursor
protein (APP) leads to substantial A� deposition and behavioral
deficits but does not commonly lead to tau pathology or neuronal
death. As a result, mouse models of AD have been called “incom-
plete” models of human AD (Irizarry et al., 1997; Radde et al.,
2008a). In contrast, we have previously reported that CVN-AD
mice, which are mNos2-deficient and transgenic for the Swedish
K670N/M671L vasculotropic Dutch/Iowa E693Q/D694N mutant
(APPSwDI) APP, display the cardinal characteristics of AD progres-
sion, including A� plaques, phosphorylated tau protein, spatial
memory impairments, and significant hippocampal neuronal death
(Colton et al., 2008, 2014; Wilcock et al., 2008). The prevention of
inducible nitric oxide synthase (iNOS) protein expression in this model
recapitulates the biology of human myeloid cells, which produce rela-
tively little iNOS and nitric oxide (NO) (Weinberg et al., 1995; Geller
and Billiar, 1998; Colton et al., 2008; Wink et al., 2011; Guo et al., 2012).
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Here, we present a detailed time course analysis of brain im-
mune responses in CVN-AD mice and describe a novel hypoth-
esis for AD pathophysiology. We find that CVN-AD mice
develop neuropathology in an age-dependent fashion that mim-
ics the progression of human AD. This neuropathology includes
the accumulation of a specific population of activated microglia
in the hippocampus and cortex and the predominant expression
of immunosuppressive genes that alter utilization of key amino
acids. Specifically, we find that arginase-1 is highly expressed in
regions of A� accumulation, suggesting that arginine depletion
and nutrient deprivation are responsible for neuronal cell death.
In support of this hypothesis, we find that CVN-AD mice have
decreased total brain arginine, and pharmacologic inhibition of
arginine utilization enzymes reverses amyloid production, im-
munosuppression, and memory impairments. Together, these
findings suggest that AD may be a disease of local immune sup-
pression, rather than proinflammatory activation, and that the
cause of neuronal death in AD is chronic immune-mediated
amino acid catabolism resulting in nutrient deprivation.

Materials and Methods
Animals. All animal experiments were performed in accordance with
protocols approved by the Institutional Animal Care and Use committee
at Duke University Medical Center under the National Institutes of
Health Guide for the Utilization and Care of Vertebrate Animals Used in
Testing, Research and Training.

CVN-AD mice. Homozygous APPSwDI/mNos2 �/� (CVN; CVN-AD)
mice were produced by crossing mice expressing the Swedish K760N/
M671L, Dutch E693Q, and Iowa D694N human APP mutations under
control of the Thy-1 promoter (Davis et al., 2004) with mNos2�/� (B6
129P2NOS2 tau1Lau/J) mice (Laubach et al., 1998) (The Jackson Labora-
tory). APPSwDI mice were generously provided by Dr. Bill Van Nostrand
and Judianne Davis at Stony Brook University Medical Center. Mice
were genotyped using standard PCR methods. To determine whether
mice used in the experiments expressed the Rd1 mutation in the Pde68
gene that causes blindness in mice (Carter-Dawson and LaVail, 1979),
CVN-AD mice were genotyped and found to be negative for Rd1. All
mice were also genotyped for the Rd8 mutation of the Crb1 gene that,
when expressed, causes retinal pathology but is not associated with blind-
ness (Mattapallil et al., 2012). CVN-AD mice were found to be heterozy-
gous for this gene. Animals were fed standard mouse chow and housed
under 12 h light/12 h dark cycles at 21 � 3°C in an Institutional Animal
Care and Use Committee approved barrier facility under Institutional
Animal Care and Use Committee-approved animal protocols. Mice were
aged to 6, 12, 24, 36, or 52 weeks of age before behavioral assays and
harvest of tissue. Mixed genders were used in the experiments, and
gender-specific effects were not examined due to the complexity of the
experimental protocol and the significantly increased number of mice
required. General pathological features of CVN-AD mice include severe
cerebral vascular amyloid deposition, tau pathology, and neuronal loss
associated with a decline in learning and memory as previously described
(Wilcock et al., 2008).

Immunohistochemistry. After injection with a lethal mixture of ket-
amine/xylazine, mice were intracardially perfused with 25 ml of PBS to
remove intravascular circulating blood cells. Perfused brains were then
rapidly removed and bisected in the mid-sagittal plane. The left hemi-
sphere was frozen in liquid nitrogen for use in ELISA and gene expression
analysis, and the right hemisphere was immersion fixed in 4% PFA. For
immunohistochemistry, brains were cryoprotected by sequential passage
through 10%, 20%, and 30% sucrose for 24 h. Frozen sagittal or coronal
sections (25 �m) were then cut. Sections equally spaced at 600 �m apart
were immunostained with standard techniques using the following anti-
bodies: anti- A� (H31L21; Invitrogen), anti-phospho tau (AT8; Thermo
Scientific), anti-CD45 (YW62.3, AbD Serotec), anti-CD11b (5C6, AbD
Serotec), anti-CD11c (N418; AbD Serotec), anti-Iba-1 (polyclonal 01-
1941; Wako Pure Chemicals), anti-CD206 (AF2535; R&D Systems), and
anti-arginase-1 (gift from Dr. Sidney Morris, University of Pittsburgh,

and commercially available as ABS535; Millipore). Secondary antibodies,
ABC kit, and DAB kit were purchased from Vector Laboratories.

Quantitative RT-PCR. Frozen cryo-pulverized brain samples from
CVN-AD, mNos2�/�, WT, and APPSwDI mice at 6, 12, 24, 36, and 52
weeks of age were used to prepare RNA for analysis of immune gene
expression. mRNA was extracted from frozen tissue using the RNeasy
Tissue Kit (QIAGEN) according to the manufacturer’s instructions.
RNA was quantified using a NanoDrop spectrophotometer, and cDNA
was generated using the cDNA high-capacity kit (Applied Biosystems).
Real-time PCR was performed using the TaqMan Gene Expression kit
(Applied Biosystems), according to the manufacturer’s instructions and
as previously described (Wilcock et al., 2011b). All PCR probe sets were
purchased from Applied Biosystems. Beta-actin served as the internal
standard, and fold change in gene expression levels was calculated using
the 2(�delta delta C(T)) method (Livak and Schmittgen, 2001). WT
mice at the same age were used as the comparator except where
delineated.

Flow cytometry. Anesthetized mice were intracardially perfused with
PBS, and brains were then rapidly harvested, manually dissociated, and
digested for 1 h at 37°C with 1.5 mg/ml collagenase A (Roche Applied
Science) and 0.4 mg/ml DNase I (Roche Applied Science) in 5% FBS with
10 mM HEPES. Cells from the digested tissue were then strained through
a 70 �m filter and washed with PBS. Cells were centrifuged in a 30% over
70% Percoll (Invitrogen) in PBS density gradient. Cells from the inter-
face were isolated, and red blood cells were lysed with ammonium/chlo-
ride/potassium lysis buffer (Invitrogen). Cells were counted and then
stained with Live/Dead Aqua (Invitrogen), and the following antibodies
(all from eBioscience) were used: CD11b FITC, CD11c PE-Cy5.5, CD45
PE-Cy7, CD3� APC, Ly6G AF700, CD11b APC-Cy7, Ly6C V450, and
IA-IE Qdot655. Flow cytometry was run on a BD LSR-II Flow Cytometer
(BD Biosciences) in the Duke Human Vaccine Institute Flow Research
Facility and analyzed with FlowJo (TreeStar).

Cell isolation by FACS and RNA isolation and amplification. CVN-AD,
mNos2�/�, and WT (C57BL/6 ) mice (n � 4 per genotype), all at 48 weeks
of age, were anesthetized and intracardially perfused with PBS. Cells were
isolated for flow cytometry as described above. Cells were counted and
stained with the following antibodies (all from eBioscience): CD11c PE-
Cy5.5, CD45 PE-Cy7, CD11b APC-Cy7, and Ly6G V450. FACS sorting
was run on a BD FACS Aria II Special Order Research Product Flow
Cytometer (BD Biosciences) in the Duke Human Vaccine Institute Flow
Research Facility. Cells were gated on Ly6G � CD11b � CD45 low micro-
glia for mNos2�/�, C57BL/6, and CVN-AD samples and further subgated
into CD11c high and CD11c low populations in CVN-AD samples. A total
of 1000 microglia were collected from each mNos2�/� and C57BL/6
brain, and 1000 CD11c high and CD11c low microglia were collected per
CVN-AD brain and sorted in a volume of 1.0 �l directly into 6.4 �l of
SuperAmp Lysis Buffer (Miltenyi Biotec). Samples were then incubated
at 45°C for 10 min and frozen at �20°C before shipment to Miltenyi
Biotec on dry ice.

Microarray analysis. SuperAmp RNA amplification was performed by
Miltenyi Biotec based on a global PCR protocol using mRNA-derived
cDNA. cDNA integrity was checked via Agilent 2100 Bioanalyzer plat-
form (Agilent Technologies). cDNA was labeled with Cy3 and hybridized
to an Agilent Whole Mouse Genome Oligo Microarray 8�60K. After
washing and staining, fluorescence signals were detected with Agilent’s
Microarray Scanner System (Agilent Technologies). The Agilent Feature
Extraction Software was used to read out and process microarray image
files (Agilent Technologies). Partek Genomics Suite (Partek) was used for
data analysis, where we ran an ANOVA with the four experimental
groups to identify significantly differentially expressed genes. Signifi-
cance threshold for the effect size was set at twofold change and false
discovery rate at 5% (q � 0.05).

Measurement of brain amino acids. Amino acids were extracted from
cryo-pulverized 20- to 24-week-old mouse brain tissue (n � 3–12 mice/
strain) using 4% CHAPS/50 mM EDTA solution with probe sonication.
Stable-isotope-labeled internal standards for L-arginine, L-ornithine, and
L-citrulline (Cambridge Isotope) were added to the extraction mixture
following sonication and used for MS-based quantitation. Samples were
clarified with centrifugation, subjected to solid phase extraction purifi-
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cation on Strata-X-C columns (Phenomenex), dried under air, and re-
suspended in isopropanol/0.2% formic acid. Analytes and their internal
standards were then quantified in positive-ion liquid chromatography-
tandem mass spectrometry (LC-MS/MS) mode, using previously de-
scribed methodology (Brown et al., 2011). Briefly, separations were
performed on an Atlantic hydrophilic-interaction chromatography
(HILIC) column (Waters) with mobile phases of 75% acetonitrile/25%
methanol/0.2% formic acid (mobile phase A) or 0.2% formic acid in
water (mobile phase B) at 0.2 ml/min flow rate. Samples were introduced
to a 4000 QTrap LC-MS/MS (AB SCIEX) via electrospray ionization, and
analytes and internal standards quantified using multiple-reaction mon-
itoring. Analyte concentrations were calculated from the slope of a cali-
bration curve generated by serial dilutions of internal standards.

Difluoromethylornithine (DFMO) treatment. CVN-AD mice at 6 – 8
weeks of age were treated with 10 mg/kg DFMO plus 1 mg/kg putrescine
in saline by oral gavage 3 times a week (Mon/Wed/Fri) for 14 weeks (n �
8 mice/ group). Control CVN-AD mice were treated on the same sched-
ule using oral gavage with 1 mg/kg putrescine in saline alone (n � 7
mice/group). DFMO (trade name Eflornithine; pharmaceutical grade)
was provided by Dr. Patrick M. Woster, Department of Pharmacology,
Wayne State University (Detroit) and was stored at �80°C and aliquoted
at the time of use. Cotreatment with putrescine was used to reduce po-
tential DFMO-mediated damage to the epithelial cells in the gastrointes-
tinal tract. All mice were weighed twice per week, and no significant
differences in weight were observed between DFMO-treated and saline-
treated mice. After 14 weeks of treatment, mice were tested in the radial-
arm water maze (RAWM) for learning and memory. On completion of
behavioral testing, brains were harvested for pathological assessment and
gene analysis.

Two day Radial arm water maze (RAWM) test for learning and memory.
CVN-AD, WT (C57BL/6 ), and mNos2�/� mice were tested at the ages
indicated using the 2 day RAWM described in detail previously (Alamed
et al., 2006). Briefly, a six arm maze is submerged in a black plastic pool of
water, and a platform is placed at the end of one arm below the surface.
The mouse receives 15 trials per day for 2 d (30 total) and is started in a
different arm each trial while the goal arm containing the platform re-
mains constant for each mouse. Using static visual cues, the mouse learns
the position of the escape platform. On the first day, the first 12 trials are
considered training and alternate between a visible and a hidden plat-
form, whereas the final 3 trials use a hidden platform. All trials on day 2
use a hidden platform. The number of errors (incorrect arm entries) is
counted over a 1 min period. The errors for each consecutive three trials
(1–3, 4 – 6, 7–9, 10 –12, 13–15) are averaged as one block, resulting in 5
blocks per day. After completion of all hidden maze tasks, mice were
tested for sensory or motor deficits using the open pool task with visible
platform as described previously (Alamed et al., 2006). Mice that did not
perform successfully in the open pool task were excluded from data
analysis. All behavioral tests were performed with treatment groups
blinded to the investigator.

Statistical analysis and comparisons between groups. Average values �
SEM were determined for each of the outcome measures at 6, 12, 24, 36,
and/or 52 weeks of age in the CVN-AD and control mice. Mixed genders
were used in the analyses, and gender based-differences were not inves-
tigated. Significant differences across age within strain were determined
using one-way ANOVA, and statistical significance between genotypes
and age was determined by two-way ANOVA using the PRISM statistical
program (GraphPad Software). Significance was set at p � 0.05. The
number of mice analyzed ranged from 3 to 14 mice per group depending
on the outcome assay.

Results
Immune suppression is an early feature of disease
progression
CVN-AD mice display characteristic neuropathology resembling
human AD as they age, which include the accumulation of A�
deposits starting at 6 weeks of age, the presence of hyperphospho-
rylated and aggregated tau beginning at 12 weeks of age, spatial
memory deficits beginning �24 weeks of age, and neuronal loss

at �36 weeks of age (Colton et al., 2014). We thus reasoned that
these mice could be used to identify immune abnormalities that
arise early in the course of disease as well as with disease progres-
sion during aging. We used qRT-PCR of total brain lysate
to measure gene expression for a variety of proinflammatory
and anti-inflammatory genes implicated in AD in CVN-AD,
mNos2�/�, and WT (C57BL/6) mice at 6, 12, 24, 36, and 52 weeks
of age. We also examined mRNA expression levels in the parent
APPSwDI strain to determine whether A� accumulation alone
was a factor in the immune changes, as levels of soluble and
insoluble A� are not significantly different in APPSwDI versus
CVN-AD mice (Wilcock et al., 2008). Because significant neuro-
nal death begins �36 weeks in CVN-AD mice (Colton et al.,
2014), we grouped the genes into two major patterns of expres-
sion: genes that were upregulated before 36 weeks (Fig. 1A–D)
and genes upregulated at or after 36 weeks (Fig. 1E–I). We also
examined gene expression levels for chemokine receptors and
ligands from 6 to 52 weeks of age (Fig. 1J–L).

Genes that were upregulated at the earliest time points in
CVN-AD mice were predominately those that have been linked
to immune suppression in macrophages (Fig. 1). This included
arginase-1 (Arg1), Found in Inflammatory Zone 1 (Fizz1), and
interleukin 1 receptor antagonist (Il1rn). These genes tended to
display the highest expression level only transiently, returning
toward WT control levels by 24 weeks. Expression of these anti-
inflammatory genes was significantly greater in CVN-AD mice
compared with the parent APPSwDI strain, with the exception of
Arg1 expression at 12 weeks of age, where a small increase in
mRNA level was observed in APPSwDI brain lysates.
Interleukin-1� (Il1b), the classic proinflammatory mediator, was
also expressed early in CVN-AD mice, beginning at 12 weeks of
age. After this initial peak, IL-1� gene expression levels remained
significantly elevated throughout the 52 weeks of the study. Com-
pared with APPSwDI mice, which exhibited only slight increases
in Il1b and Il1rn at 24 and 52 weeks, CVN-AD mice had greater
expression levels for Il1b and Il1rn at all time points.

Specific genes that were increased in CVN-AD mice at or after
36 weeks of age included the canonical proinflammatory gene
Tnfa, which was significantly increased only at the latest time
point studied (52 weeks), and Tgfb, an anti-inflammatory gene
that was increased transiently beginning at 36 weeks of age. Also
increased was Cd33 (Siglec-3), an inhibitory lectin that has been
implicated in genome-wide association studies of AD and that is
believed to alter microglial phagocytosis of A� (Salminen et al.,
2009; Bradshaw et al., 2013). Other immunosuppressive genes
known to be associated with AD, namely, Trem2 and Tryobp
(DAP12), were also increased late in disease progression in
CVN-AD mice. Data from APPSwDI mice brain showed a similar
age-specific pattern of expression for these late genes, but no
significant changes were found in either mNos2�/� or wild-type
control mice at any age.

Expression of mRNAs for the chemokine receptor Ccr2 (Fig.
1J) and its ligand Ccl2 (MCP1) (data not shown) was unchanged
at all time points in CVN-AD brains. Ccr2 is expressed on inflam-
matory monocytes and has been shown to mediate the migration
of these cells from the periphery into the brain in mice expressing
mutated human APP (El Khoury et al., 2007; Naert and Rivest,
2011), although others have observed that circulating monocytes
from humans with AD have depressed CCR2 expression (Zhang
et al., 2013b). Expression of Cxcl1 (KC, GROa), which can medi-
ate neutrophil recruitment and may have a role in neuroprotec-
tion, and Ccl11 (eotaxin 1), a chemoattractive factor for
eosinophils, also remained unchanged (data not shown). How-
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ever, Ccr1 and Cx3cr1 expression was significantly increased in
CVN-AD mice but was not observed in any of the control mice,
including APPSwDI mice. Increased Ccr1 expression in CVN-AD
mice was observed early and elevated at all ages. CCR1 has been
shown to associate with plaques in the entorhinal cortex and
hippocampus, is an early marker for clinical dementia in humans
with AD, and has been shown to directly correlate with cognitive
decline (Halks-Miller et al., 2003). Expression of Cx3cr1, which is
expressed primarily by microglia in the brain, increased progres-
sively in CVN-AD brains (Fig. 1L), consistent with the increasing
number of microglia (see Fig. 3). However, gene expression for
Cx3cr1 receptor ligand, Cx3cl1 (fractalkine), was not increased at
any time (data not shown).

CVN-AD mice show progressive cellular inflammation with
CD11c � microglia in areas of A� deposition
To better understand the cellular basis of the altered immune
responses found in whole-brain lysates of CVN-AD mice com-
pared with control mice, we examined the presence and charac-
teristics of typical immune cells using immunocytochemistry on

brain sections through one year of the disease process. Age-
matched mNos2�/� and C57BL/6 mice were used as controls.
Immune markers that are characteristically upregulated in tissue
sections from autopsied human AD brain include CD45, MHC-
II, CD11b, and CD11c (Rozemuller et al., 1986; McGeer et al.,
1987; Rogers et al., 2002; Mrak and Griffin, 2005; Eikelenboom et
al., 2010). Changes in these markers are used as a pathological
indicator of the immune response in humans with AD and are
also observed in mouse models of AD (Tan et al., 2000; Butovsky
et al., 2006; Nichol et al., 2008; Tambuyzer et al., 2009; Mildner et
al., 2011). In CVN-AD mice, tissue expression of CD45, Iba-1,
and CD11c is correlated with amyloid deposition with aging (Fig.
2). A� plaques appeared initially in the subiculum of the hip-
pocampus and increased in staining density throughout the cor-
tex and hippocampus with age (Fig. 2A–D). A� deposition was
accompanied in time and spatial location by increased immuno-
reactivity for CD45 (Fig. 2E–H). CD45� cells had the morpho-
logical features of reactive microglia with bushy, shortened
processes (data not shown). To confirm that CD45 cells in
CVN-AD brains represent microglia, sections from the same

Figure 1. Expression of immune-related genes from whole-brain lysates. Average values and SEM for the relative change in mRNA levels are shown for immune-related genes from whole-brain
lysate samples from CVN-AD, mNos2 �/�, WT (C57BL/6 ), and APPSwDI mice. A–D, Genes that were upregulated in CVN-AD mice before 36 weeks of age. E–I, Genes that were upregulated in
CVN-AD mice at or after 36 weeks of age. J–L, Gene expression of chemokine receptors. mRNA expression was measured using quantitative RT-PCR and represent the 2(�delta delta C(T)) compared
with WT mice. Samples were analyzed by two-way ANOVA and post hoc multiple comparison test with Bonferonni’s correction. *Comparisons between CVN-AD or APPSwDI and WT. #Comparisons
between CVN-AD and APPSwDI mice. *p � 0.05. **p � 0.01. ***p � 0.001. ****p � 0.0001. #p � 0.05. ##p � 0.01. ###p � 0.001. ####p � 0.0001. n 	 5 mice per group.
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CVN-AD mice were stained with Iba-1, a calcium binding pro-
tein that is expressed specifically on microglia in the CNS (Fig.
2I–L). Iba-1 stained microglia throughout the brain, as well as
cells within the hippocampus and cortex that correlated with the
pattern of CD45 staining in these mice.

We also examined the expression pattern of CD11c, which is
not commonly found on either resting or reactive microglia in
mouse brain, but is found on resting and activated human mi-
croglia (Akiyama and McGeer, 1990). An increasing pattern of
expression was similar to that of CD45 was observed for CD11c
(Fig. 2M–P), and CD11c expression found to overlap with
Iba-1� microglia using double labeling techniques (Fig. 2Q). To
further confirm the change in levels of CD11c with age, we also
performed qRT-PCR on whole-brain lysates. Gene expression
levels for Itgax (CD11c) increased dramatically from 6 weeks of

age, leading to an �100-fold increase at 52 weeks of age (Fig. 2R).
In contrast, the expression levels of Itgax mRNA in the APPSwDI
parent mouse strain showed a relatively delayed increase in gene
expression levels and were significantly less than the fold changes
in mRNA found in CVN-AD mice brain. Similarly, we observed
less and delayed CD11c immunostaining at all ages when com-
paring APPSwDI with CVN-AD mice (data not shown). No
changes in CD11c mRNA levels were found for mNos2�/� or WT
mice brain lysates at any age studied.

The above findings suggest that cellular inflammation in
CVN-AD mice is primarily due to an increased number of reac-
tive microglial cells that coexpress CD45 and CD11c. To confirm
the identity of the CD11c� cells, we performed 12-color flow
cytometric analysis of homogenized whole brains from 42-week-
old mNos2�/�, which lack CD11c� microglia, and CVN-AD

Figure 2. CVN-AD amyloid deposition is associated with cells expressing characteristic markers of microglia. Representative sagittal sections from a CVN-AD mouse at 6, 12, 24, and 52 weeks of
age immunostained for A� (A–D), CD45 (E–H ), Iba-1 (I–L), and CD11c (M–P). For each age, panels represent sister sections from the same mouse. For example, A, E, I, and M are sections from the
same 6-week-old mouse. Scale bar, 500 �m. Q, Representative micrographs of CD11c and Iba-1 costaining in the subiculum of the hippocampus from a 24-week-old CVN-AD mouse. Scale bar, 25
�m. R, Increased CD11c immunostaining is associated with increased total brain gene expression of CD11c (Itgax). Gene expression levels (mean � SEM) were measured using quantitative RT-PCR
and represent the 2(�delta delta C(T)) compared with WT mice. Samples were analyzed by two-way ANOVA and post hoc multiple comparison test with Bonferonni’s correction. *Comparisons
between CVN-AD or APPSwDI and WT. #Comparisons between CVN-AD and APPSwDI mice. *p �0.05. **p �0.01. ***p �0.001. ****p �0.0001. #p �0.05. ##p �0.01. ###p �0.001. ####p �
0.0001. n 	 5 mice per group.
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mice (Fig. 3). Using this technique, we found increased total cell
numbers in the brains of CVN-AD mice that was caused by a
significant increase in the numbers of CD45 low CD11b� micro-
glia, and secondarily, by a trend toward increased numbers of T
cells (Fig. 3B). The total numbers of B cells, neutrophils, eosino-
phils, macrophages, Ly6C low resident monocytes, and Ly6C high

inflammatory monocytes, however, were unchanged in CVN-AD
brains (Fig. 3B). CD11c was predominantly expressed by
CD45 low microglia (Fig. 3C). At 42 weeks of age, �12.2 � 2.5% of
all microglia were CD11c�, compared with 2.24 � 0.3% in
mNos2�/� controls, and there was a significant increase in the
mean fluorescence intensity of microglial expression of CD11c
(Fig. 3D). Thus, both immunocytochemical and flow cytometric
analyses demonstrated that CVN-AD mice develop substantial
cellular inflammation that is caused primarily by the expansion
of microglial cells. These microglial cells display a reactive mor-
phology, accumulate specifically in areas of A� deposition, and
can be distinguished from microglia in control mice by their
increased expression of CD11c. This pattern of cellular inflam-
mation is consistent with that seen in humans with AD (Dickson
et al., 1988; Akiyama and McGeer, 1990).

CD11c � microglia show an immunosuppressive phenotype
To better understand the potential functional capabilities of the
CD11c-immunopositive microglia in CVN-AD mice, we used
flow sorting to isolate this population from whole-brain lysates.
Mice were used at 48 weeks of age to ensure a large population of
cells for the study. Cells were gated on Ly6G� CD11b� CD45 low

microglia for mNos2�/�, WT, and CVN-AD brain samples and

further subgated into CD11c high and CD11c low populations in
CVN-AD mice. Messenger RNA from each collected cell sample
was then globally amplified using SuperAmp to produce cDNA
for use in an Agilent Whole Mouse Genome Oligo microarray.
Gene expression from the CVN-AD CD11c� cells was compared
with that of the Ly6G� CD11b� CD45 low CD11c� microglia
from CVN-AD, C57BL/6, and mNos2�/� brains. ANOVA with
the four experimental groups was used to identify significantly
differentially expressed genes. We set the significance threshold
for the effect size at twofold change and false discovery rate at 5%
(q � 0.05).

Approximately 375 genes were significantly upregulated and
85 genes downregulated in CVN-AD CD11c� microglia com-
pared with CD11c� microglia from CVN-AD, C57BL/6, and
mNos2�/� brains (Table 1). Upregulated genes included those
genes that are used to identify microglia in humans with AD, such
as Itgax (Cd11c/LeuM5; CR4) and Cd200r (Cell surface glycopro-
tein CD200 receptor 2; OX2R). The 124-fold increase in Itgax
gene expression verified our previous observations and our FACS
isolation process. Strikingly, many of the genes that were upregu-
lated in CVN-AD CD11c� microglia, such as Spp1, Wfdc17,
Gp49a, Apoe, and Pdcd1, were genes associated with immune
suppression and increased arginase activity. Similarly, many of
the genes that were downregulated were from proinflamma-
tory pathways, such as Apobec3, Ifngr1, and Siglech, or repre-
sent negative regulators of immune suppression, such as Klf6
(Table 1). Together, along with additional genes that were
changed significantly (Table 1), we observed that CD11c �

Figure 3. CD11c � cells from CVN-AD brains have a microglial phenotype. A, Representative flow cytometry plots from aged 48-week-old mNos2 �/� and CVN-AD brains after gating on CD45 �

cells. B, Quantification of total CD45 � cells and individual cell types distinguished by FACS in 48-week-old mNos2 �/� and CVN-AD brains, including T lymphocytes (T), B lymphocytes (B),
neutrophils (PMN), monocytes/macrophages/DCs (Mac/DC), and microglia (MG) from aged 48-week-old mNos2 �/� and CVN-AD brains. *p � 0.05; ****p � 0.0001. C, Representative flow plots
of CD45 and CD11c expression from aged 48-week-old mNos2 �/� and CVN-AD brains after gating on all CD11b � cells. D, Representative histogram of CD11c expression on mNos2 �/� (closed
gray) and CVN-AD (open black) CD11b � CD45 low cells, as well as quantitative summaries of the percentages and geometric mean fluorescence intensities of CD11c from mNos2 �/� and CVN-AD
CD11b � CD45 low microglia. *p � 0.01. n � 4 mice per group.
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microglia from CVN-AD mice had a predominantly immuno-
suppressive phenotype.

CVN-AD pathology is associated with increased arginine
utilization and decreased brain arginine bioavailability
The immunosuppressive phenotype observed in CVN-AD mice
brain suggested a potential causative role for this immune process
in disease progression. In particular, Arg1, a critical anti-
inflammatory gene that codes for the enzyme arginase-1, was
expressed predominantly in young mice in brain areas associated
with A� deposits but before neuronal loss in this model of AD.
Arginase-1 regulates the microenvironmental level of arginine, a
semiessential amino acid, by altering arginine catabolism (Bronte
and Zanovello, 2005; Gabrilovich and Nagaraj, 2009; Pesce et al.,

2009; Tang et al., 2009). Increased usage of arginine results in a
drop in tissue levels of arginine (Reeds, 2000), which if not re-
placed, initiates amino acid deprivation responses in susceptible
cells. Sustained arginine deprivation leads to cell death (Kuma
and Mizushima, 2010). To determine whether induction of Arg1
may play a role in AD-like pathology in CVN-AD mice, we ex-
amined arginase-1 protein expression and its spatial and tempo-
ral relationship with A� deposition and CD11c� microglial at
different ages using immunocytochemistry. Arginase-1 protein
accumulated in the subiculum and CA1 regions of the hippocam-
pus, areas of primary neuronal loss, starting between 6 and 12
weeks and peaked at 24 weeks (Fig. 4A), consistent with the onset
of behavioral deficits at 24 weeks. In contrast, no arginase-1 stain-
ing was observed at any time point in Nos2�/� brains (Fig. 4B;

Table 1. Gene expression in CVN-AD CD11c � microglia compared with CVN-AD CD11c � microglia, C57BL/6 microglia, and mNos2 �/� microgliaa

Gene Name Fold change p value Reported actions References

Mamdc MAM domain containing protein 2 515 9.7 � 10 �7 Glycosaminoglycan binding, linked to
negative regulation of synapses

Pettem et al., 2013

Spp1 Secreted phosphoprotein 1;
osteopontin

515 5.9 � 10 �6 Increased in CSF of AD patients;
enhances immunosuppression

Comi et al., 2010; Sangaletti et al.,
2014

Gpnmb Glycoprotein-transmembrane nmb;
osteoactivin, Fe65-like1

442 1.5 � 10 �6 Tissue repair, M2 state; phagocytic
vesicle processing

Duffield, 2010

Wfdc17 Whey acidic protein four disulfide
core domain 17; AMWAP

136 4.1 � 10 �5 Overexpression increases Arg-1,
reduces IL-6, IL-1�

Karlstetter et al., 2010

Itgax Integrin alpha X (complement
component 3 receptor 4 sub-
unit), CD11c

124 5.8 � 10 �6 Leukocyte-specific integrin; associ-
ated with dendritic cells; phagocy-
tosis of complement-coated
particles; found on microglia in AD

Akiyama and McGeer, 1990; Tooyama
et al., 1990; Becher and Antel,
1996; Butovsky et al., 2007

Gp49a Glycoprotein 49a; Lirb4 107 2.8 � 10 �4 Member of inhibitory Ig superfamily;
increased IL-4; suppresses LPS;
inhibits Fc-gamma-mediated
phagocytosis

Arm et al., 1997; McCormick et al.,
1999

Gng12 Guaninenucleotidebindingprotein12 64 1.7 � 10 �4 Inhibits LPS-mediated pro-inflammation Larson et al., 2010
Pdcd1 Programmed cell death 1; PD-L1,

CD279
51 4.1 � 10 �6 Immunoglobin superfamily; shifts

microglia to M2 phenotype; regu-
lates Arg-1 activity

Yao et al., 2014

Apbb2 Amyloid precursor protein binding
protein 2

25.8 2.4 � 10 �4 Adaptor protein binds to cytoplasmic
domain of APP; polymorphisms
associated with dementia in aged
population; involved in ECM syn-
thesis by Macs

Wright et al., 2005; Grupe et al.,
2006; Golanska et al., 2013

TIMP2 Tissue inhibitor of metallopro-
tease-2

20.7 3.2 � 10 �4 Blocks metalloprotease activity; asso-
ciated with M2 phenotype

Ridnour et al., 2007; Wilcock et al.,
2011a

Igf1 Insulin-like growth factor 1; 2;
somatomedin c

27.4 2.0 � 10 �5 Found in human microglia, protects
from IL-1- and IFN-�-mediated
damage; promotes A� clearance

Trueba-Sáiz et al., 2013
Igf2 8.0 2.1 � 10 �3

Apoe Apolipoprotein E 20.1 3.6 � 10 �4 Strongest single gene risk factor for
AD, suppresses proinflammatory
cytokines

Saunders et al., 1996

CD200r Cell surface glycoprotein CD200
receptor 2, OX2R

13.8 3.3 � 10 �3 Inhibitory immune receptor found on
microglia, marker for M2 activation
in human MG, less so in mice

Denieffe et al., 2013; Walker and Lue,
2013

Klf6 Kruppel-like factor 6 0.12 4.9 � 10 �6 Suppression is linked to M2
phenotype

Date et al., 2014

Apobec3 Apolipoprotein B mRNA editing
enzyme, catalytic polypeptide 3

0.18 4.1 � 10 �4 Promotes antiviral immunity through
production of neutralizing
antibody

Santiago et al., 2008

Ifngr1 Interferon-� receptor 1; CD119 0.19 9.1 � 10 �6 Encodes ligand binding domain for
IFN-�; downregulated by TLR2;
IFN-�

Curry et al., 2004; Kearney et al., 2013

Siglech Siglec-H 0.42 2.6 � 10 �4 DAP12 signaling molecule, microglial
“sensome,” decreased with aging

Hickman et al., 2013

aSelect genes that were significantly upregulated or downregulated in CVN-AD CD11c � microglia compared with CVN-AD CD11c � microglia, C57BL/6 microglia, and mNos2 �/� microglia, including fold change in expression, p value, and
reported actions with references.
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and data not shown). Of note, arginase-1 staining in CVN-AD
brains did not primarily localize to cells but instead diffusely
stained the hippocampus and subiculum, suggesting that argi-
nase was distributed in the extracellular space surrounding the
cells (Fig. 4B). Additionally, arginase-1 staining in the hippocam-
pus displayed a spatial correlation with that of A�, Iba-1, and
CD11c (Fig. 4C), highly suggesting that CD11c� microglia are a
likely source of arginase-1 production and that expression is as-
sociated with A�.

To determine whether arginase-1 expression alters brain argi-
nine levels in CVN-AD mice, we examined brain amino acid
levels and the compensatory expression of amino acid transport-
ers in these animals. Total brain arginine and arginine metabo-
lites, including ornithine and citrulline, were measured using
HILIC and LC-MS/MS (Brown et al., 2011). In disease contexts,
the global arginine bioavailability ratio (GABR), which is the
ratio of arginine to its metabolites ornithine and citrulline
(arginine/(ornithine � citrulline)), is often a better indicator
of dysregulated arginine metabolism than arginine concentra-
tion alone (Tang et al., 2009; Morris, 2012). Calculating the
GABR revealed that, compared with WT, mNos2�/�, and
APPSwDI mice, CVN-AD mice had significantly reduced
GABR (Fig. 5A), indicating that CVN-AD brains exhibited
increased arginine catabolism.

Cells deprived of arginine attempt to compensate by increas-
ing expression of amino acid transporters that regulate the cellu-
lar uptake of arginine from the local environment (Hyatt et al.,
1997; Bröer, 2002; Closs et al., 2006). To determine whether such

mechanisms were active in CVN-AD brains, we measured whole-
brain lysate mRNA levels of cell membrane-bound amino acid
transporters that mediate arginine uptake (Fig. 5B–E). These in-
cluded cationic amino acid transporter 1 (CAT1; Slc7A1), cat-
ionic amino acid transporter 2 (CAT2; Slc7A2), cationic amino
acid transporter 3 (CAT3; Scl7A3), and the large neutral amino
acid transporters LAT1 (Slc7A5) and LAT2 (Slc7A8). We ob-
served no significant changes for all of these genes in Nos2�/�,
C57BL/6, and APPSwDI mice (Fig. 5B–E). In contrast, in
CVN-AD brain, we found that LAT1 mRNA was consistently
increased from 12 weeks through 52 weeks (Fig. 5B). We also
observed transient increased gene expression for LAT2, CAT1,
and CAT2 at 12 weeks of age and returning to baseline expression
levels by 24 weeks (Fig. 5C–E). CAT3 showed no significant
change at any age (data not shown), consistent with its restricted
expression on a small number of neuronal populations (Ho-
sokawa et al., 1999). These changes in GABR and arginine trans-
porters indicate that, compared with control strains, CVN-AD
mice have dysregulated arginine metabolism.

Blockade of arginine utilization reverses memory loss
Our data on arginase expression and arginine depletion in the
brains of CVN-AD mice raised the possibility that chronic brain
arginine deprivation promotes neurodegeneration. To deter-
mine whether there is a causal relationship between arginine de-
pletion and the development of pathology and cognitive defects
in CVN-AD mice, we reduced the biological effects of arginine
catabolism by blocking key enzymes in the arginine utilization

Figure 4. CVN-AD pathology is associated with arginase-1. A, Representative sagittal sections from CVN-AD mice at 6, 12, 24, and 52 weeks of age stained for arginase-1 in sister sections from
the same mice as in Figure 1. Scale bar, 500 �m. B, Magnified view of arginase immunoreactivity in the subiculum. Representative sagittal sections from 24-week-old mNos2 �/� and CVN-AD
stained for arginase-1. Scale bars: top, 500 �m; bottom, 50 �m. C, Sister coronal sections from the same 52-week-old CVN-AD brain stained for A�, CD11c, Iba-1, and arginase-1 to show regional
associations.
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pathway (Fig. 6). We chose to use eflornithine (DFMO), an irre-
versible inhibitor of ornithine decarboxylase (ODC) (Abeloff et
al., 1984; Pepin et al., 1987; Seiler, 2003) and a partial inhibitor of
arginase that has been previously used to block arginine utiliza-
tion in vivo (Selamnia et al., 1998). Because the polyamine path-
way, which is downstream of ODC, is important for cell
proliferation particularly in the gastrointestinal system (Buts et
al., 1993), we supplemented CVN-AD mice with putrescine to
reduce gastrointestinal damage created by decreased polyamine
levels (Kameji et al., 1979; Löser et al., 1999).

Two treatment groups were established: CVN-AD mice
treated with oral gavage of putrescine alone and CVN-AD mice
treated with oral gavage of putrescine plus DFMO. Because in-
creased arginase-1 mRNA and protein levels were observed at the
earliest time points in the disease process, treatment was started
at 6 – 8 weeks of age with oral gavage 3 times a week for 14 weeks.
Immediately on conclusion of treatment, we tested learning and
memory behavior in the putrescine only-treated and DFMO plus
putrescine-treated mice. We have previously demonstrated that
CVN-AD mice have deficits in spatial memory as measured by
RAWM and make significantly more errors than either
mNos2�/� or C57BL/6 controls at 24 weeks of age (Colton et al.,
2014). CVN-AD mice treated with DFMO plus putrescine dem-
onstrated significantly improved acquisition and recall compared
with vehicle (putrescine only)-treated CVN-AD mice (Fig. 6A),
suggesting that blockade of arginine catabolism reverses the be-
havioral phenotype of memory loss found in CVN-AD mice.

To determine whether this reversal was associated with previ-
ously identified AD-like pathologies, we measured levels of both
soluble and insoluble A�40 and A�42 in whole-brain lysates. We
found that soluble and insoluble A�40 and A�42 were significantly
reduced by DFMO plus putrescine treatment (Fig. 6B). To deter-
mine whether neuronal numbers were altered, the number of
neurons in the CA3 region of the hippocampus was counted
using unbiased stereology. As we expected, we found no differ-

ence in the number of hippocampal neurons between treatment
groups of 20- to 24-week-old mice, as CVN-AD mice do not
develop significant neuronal loss until �36 weeks of age (data not
shown). We measured mRNA levels for Itgax (CD11c) in whole-
brain lysates from these mice and found that Itgax expression was
significantly reduced in the DFMO-treated group (Fig. 6C). We
also measured Pdcd1, a principal immunosuppressive gene that
regulates arginase activity and T-cell activity (Liu et al., 2009;
Krempski et al., 2011) and was highly increased in our gene
screen. DFMO treatment significantly reduced Pdcd1 expression
(Fig. 6C). Genes associated with arginine utilization were also
measured. As expected, Arg1 mRNA levels did not change,
whereas gene expression for spermine synthase s-acetyl-
transferase, which is induced by polyamine activity (Colton et al.,
2004; Krempski et al., 2011), was significantly decreased by
DFMO treatment (Fig. 6C). Immunohistochemical staining for
A� revealed that DFMO treatment in CVN-AD mice resulted in
less A� plaques, particularly in the cortex and thalamus, and to a
lesser extent, in the hippocampus. Similarly, we found that
DFMO-treated CVN-AD mice had less CD11c� cells in the cor-
tex, thalamus, and hippocampus. Interestingly, treatment with
DFMO was less efficacious for reducing A� and CD11c in the
subiculum of the hippocampus (Fig. 6D). Together, these obser-
vations indicate that treatment with DFMO reversed arginine
utilization and prevented AD pathology.

Discussion
Our studies using CVN-AD mice show that: (1) CD11c� micro-
glia accumulate at sites of A� deposition, (2) these microglia
show an immunosuppressive phenotype, (3) extracellular argi-
nase accumulates in these same regions, (4) global arginine bio-
availability significantly decreases, and (5) inhibition of
abnormal arginine utilization results in a marked improvement
in pathology and cognitive function. Importantly, CD11c� mi-

Figure 5. CVN-AD brains have decreased total L-arginine bioavailability and increased expression of arginine transporters. A, Global arginine bioavailability (arginine/(ornithine � citrulline)) for
CVN-AD, mNos2 �/�, WT, and APPSwDI mice. Average values (� SEM) per genotype were calculated for individual mice (n � 3–12 mice per group). Amino acid levels were measured using HILIC
LC-MS/MS. **p � 0.01 (one-way ANOVA). B–E, Relative gene expression (mean � SEM) was measured in total brain homogenates from CVN-AD, mNos2 �/�, WT, and APPSwDI mice for the
neutral arginine transporters Slc7a5 (LAT1) and Slc7a8 (LAT2) (B, C) and for the cationic amino acid transporters Slc7a1 (CAT1) and Slc7a2 (CAT2) (D, E). Samples were analyzed by two-way ANOVA
and post hoc multiple comparison test with Bonferonni’s correction. *Comparisons between CVN-AD or APPSwDI and WT. #Comparisons between CVN-AD and APPSwDI mice. *p�0.05. **p�0.01.
***p � 0.001. ****p � 0.0001. #p � 0.05. ##p � 0.01. ###p � 0.001. ####p � 0.0001. n � 4 – 8 mice per group.
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croglial and arginase accumulation in the hippocampus and
subiculum in CVN-AD mice corresponds to brain areas previ-
ously associated with neuronal damage and loss (Wilcock et al.,
2008; Colton et al., 2014).

The role of immunity in AD pathogenesis is a critical and
unresolved question. One current view proposes that extracellu-
lar A� peptide activates CNS immune cells, including microglia
and perivascular macrophages, to produce inflammatory cyto-
kines, such as TNF�, IL-1�, and reactive nitrogen or oxygen
species that initiate neuronal death. Although this type of re-
sponse is clearly observed in acute brain diseases, such as bacterial
or viral infection and trauma, our data suggest that proinflam-
matory toxicity is not a primary factor in AD pathogenesis and
associated neuronal cell loss. Although increased proinflamma-
tory genes are observed in the CVN-AD mice with increasing age,
these changes are late in the course of the disease and counter-
acted by increased expression of immunosuppressive genes (IL-
1Ra, TGF�, CD33, TREM2, and DAP12). We propose, instead,
that a different type of immune pathology that involves immune
suppression leads to neuronal death. In association with A� de-
position, a subset of resident brain microglia assume a specific
immunosuppressive phenotype that includes expression of

Figure 6. CVN-AD memory deficits and pathology are reversed by an inhibitor of arginine utilization. A, RAWM assessment of spatial memory acquisition and recall in CVN-AD mice treated with
putrescine (put.) alone or putrescine and DFMO (10 mg/kg) by oral gavage for 3 d/week for 14 weeks. All mice were naive to the behavioral procedure and tested on the final 2 d of treatment. Day
1 depicts 5 trial groups for the acquisition phase (learning), and day 2 depicts successive trials for memory recall. Data represent the average number of errors (� SEM) made finding the escape
platform for each group of trials. Open circles represent CVN-AD mice treated with putrescine and vehicle. Closed circles represent CVN-AD mice treated with DFMO and putrescine. Data were
analyzed by two-way ANOVA and post hoc multiple comparison test with Bonferonni’s correction. ***p � 0.001. n � 7 or 8 mice per group. B, Soluble and insoluble A�40 and A�42 peptides in
total brain homogenates from CVN-AD mice treated with vehicle containing putrescine only or putrescine plus DFMO as measured by ELISA. Data represent average levels (� SEM) of A�40 or A�42
peptides. ***p � 0.001 for DFMO-treated compared with putrescine/vehicle-treated using an unpaired Student’s t test. n � 7 or 8 mice/group. C, DFMO treatment alters mRNA levels of immune
genes. Average mRNA expression levels (� SEM) for Itgax, Pdcd1 (programmed death receptor 1), Arg1, and Ssat were measured in total brain lysates from CVN-AD mice treated with putrescine in
vehicle or putrescine and DFMO. Gene expression levels were measured using quantitative RT-PCR and represent the 2(�delta delta C(T)) with untreated mice as the comparator. Significance
between untreated and treated was determined using the unpaired Student’s t test. *p � 0.05. **p � 0.01. n � 7 or 8 mice per group. D, Representative sagittal sections from CVN-AD mice treated
with either putrescine alone or putrescine and DFMO stained for A� or CD11c. For each treatment group, panels represent sister sections from the same mouse. Scale bar, 500 �m.

Figure 7. SimplifiedschematicofargininecatabolismandtheactionsofDFMOtoblockarginineutiliza-
tion.NOHA,N-hydroxyarginine.Graytext indicatesareductionofthisprotein/product inCVN-ADmice.
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CD11c and production of extracellular arginase, which acts to
deplete brain extracellular arginine levels.

In contrast with other tissues, the brain is particularly suscep-
tible to arginine deprivation as arginine is actively transported
into the brain via rate-limiting amino acid transporters (Boado et
al., 2004; Hawkins et al., 2005, 2006; Closs et al., 2006). Whereas
baseline blood arginine levels are �115 �M, whole-brain arginine
is �50 �M and even lower in the hippocampus (Dawson et al.,
2004; Erdely et al., 2010). Furthermore, under inflammatory
conditions, endogenous arginine synthesis and transport at
the blood– brain barrier are decreased. Thus, prolonged and
abnormal immune-mediated activation of arginine utilization
pathways in susceptible brain regions, such as the hippocam-
pus, may further reduce already low arginine levels, facilitat-
ing neuronal damage. When arginine utilization is interrupted
by treatment with the arginase and ODC inhibitor DFMO, we
show that AD-like pathology is prevented. Further studies will
be required to confirm that DFMO improves arginine bio-
availability and to determine whether arginase blockade can
protect against neuronal death and memory deficit in a ther-
apeutic fashion.

Our findings strikingly reflect previous observations from
human AD. CD11c � microglia are a well-known feature of
human AD pathology, although their functional role has not
been explicitly defined (Akiyama and McGeer, 1990; Tooyama
et al., 1990; Dick et al., 1997; Walker and Lue, 2005). Direct
evidence also supports that dysregulated arginine utilization
may contribute to human AD. We and others have demon-
strated that arginase mRNA expression and enzymatic activity
are increased in human AD brain samples (Colton et al., 2006;
Hansmannel et al., 2010; Liu et al., 2014). Consistent with
increased arginase activity, the frontal cortex of AD patients
has significantly decreased levels of L-arginine and L-ornithine
(Gueli and Taibi, 2013). Furthermore, others have found in-
creased polyamines (putresecine, spermidine, and spermine),
the downstream products of arginase activity, in human AD
brain (Inoue et al., 2013). Amino acid starvation leads to
GCN2 kinase-mediated phosphorylation of eIF2�, leading to
cell autophagy or apoptosis (Young et al., 2009; Altman and
Rathmell, 2012). Indeed, increased phosphorylation of GCN2
kinase has been observed in human AD brain (Ma et al., 2013),
suggesting that the integrated stress response pathway is activated as
a result of amino acid deprivation. Collectively, these data support
that arginine utilization, which is immune regulated, can be dys-
functional in AD and impact neurodegeneration.

Arginine is the sole substrate of two opposing enzyme systems:
the iNOS pathway and the arginase pathway (Fig. 7). Both iNOS
and arginase are immune regulated; and, in general, iNOS is as-
sociated with the proinflammatory phase of an immune response
and arginase is associated with the anti-inflammatory phase.
iNOS and arginase are often coexpressed, but competition be-
tween these two opposing enzymes favors arginase because of its
higher expression level and greater Vmax (Morris, 2007; Wu et al.,
2009). In humans, in contrast to C57BL/6 mice, the competitive
advantage is further skewed in favor of arginase. hNOS2 expres-
sion is tightly regulated through promoter differences and post-
transcriptional repressors, resulting in less iNOS-mediated NO
production in humans compared with mice (Colton et al., 1996;
Ganster et al., 2001; Mestas and Hughes, 2004; Guo et al., 2012).
iNOS transcript, protein, and protein activity are unchanged or even
decreased in human AD (Colton et al., 2006; Liu et al., 2014). Low
iNOS enzymatic activity also increases arginase enzyme activity due

to the loss of N-(�)-hydroxy-L-arginine, an intermediate in the
L-arginine to NO metabolic pathway and inhibitor of arginase
(Boucher et al., 1999; Tenu et al., 1999).

Our findings offer one explanation for why most mouse mod-
els of AD show abundant A� deposition but, despite large in-
creases in proinflammatory cytokines, do not show significant
neuronal cell loss (Irizarry et al., 1997; Radde et al., 2008b). By
crossing mutant APPSwDI mice onto an mNos2-deficient back-
ground, we developed a mouse model of AD that more closely
mimics the reduced iNOS activity found in humans (Vitek et al.,
1997). In contrast to CVN-AD mice, the parent APPSwDI mice
had much reduced expression of arginase at all ages and showed
no changes in arginine transporter mRNA or global arginine bio-
availability. Furthermore, reconstituting the human NOS2 gene
into the CVN-AD mouse strain resulted in equivalent AD-like
pathology as found in CVN-AD mice (Colton et al., 2014), dem-
onstrating that reducing NOS2 expression to more human-like
levels favors arginase in the competition for arginine and high-
lights the species difference in NOS2 regulation of arginine utili-
zation. Interestingly, this shift in immune-mediated redox
conditions likely accounts for the accelerated and more promi-
nent expression of CD11c, although the mechanisms governing
this difference are unknown.

The exact cell type associated with increased arginine con-
sumption remains unclear. Neurons, astrocytes, microglia, and
circulating monocytes are all capable of expressing arginase-1;
thus, each (or all) may participate in depletion of extracellular
arginine. However, few neurons demonstrate arginase immuno-
reactivity, and the neuronal expression of arginase appears to be
limited to specific tracts in the visual cortex and cerebellum (Yu et
al., 2001). Astrocytes express a similar profile of arginine trans-
porters to microglia and may actively reduce environmental ar-
ginine levels via robust uptake. Future studies are required to
understand the kinetics and cellular origin of arginase expression,
particularly in human AD pathology. However, we hypothesize
that microglia are the primary source for arginine consumption.
First, A� itself may initiate induction of immunosuppression in
microglia (Kurnellas et al., 2013). Second, similarly to our obser-
vations, human myeloid cells commonly release extracellular ar-
ginase under pathologic conditions, as has been observed in
glioblastoma and other tumors (Raychaudhuri et al., 2011). The
appearance of CD11c� microglia very early in pathology and
their tight correlation with AD pathology and extracellular argi-
nase support a role for this subtype of microglia in immune-
mediated arginase release. Importantly, when we blocked
arginase utilization in CVN-AD mice, we found significantly de-
creased expression of CD11c.

Although it cannot be firmly established with the present data,
we anticipate that the CD11c� cells arise from the brain’s endog-
enous microglial population and not from infiltrating mono-
cytes. Influx of Ly6C� inflammatory monocytes into the mouse
brain depends largely on expression of CCR2 and its ligands (El
Khoury et al., 2007; Mildner et al., 2007), and no change was
observed in total brain expression of CCR2 or CCL2 in CVN-AD
mice at any age. Although infiltrating Ly6C� monocytes could
comprise a rare cell population, and thus total brain Ccr2 would be
unchanged, we also did not observe any significant increase in brain
monocytes at multiple ages by flow cytometry. Supporting these
findings, Zhang et al. (2013b) previously demonstrated that mono-
cytes from humans with AD have decreased expression of CCR2,
suggesting decreased capacity for chemotaxis. In concordance with
data from human AD, we found increased CCR1 expression in
CVN-AD brain, although how CCR1 regulates chemotaxis in AD
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remains unknown (Halks-Miller et al., 2003). Thus, although our
data highly implicate endogenous hippocampal microglia and not
peripheral cells, further studies are required to prove this point.

In conclusion, based on our analysis of CNS immunity during
aging in a mouse model of AD, we conclude that, contrary to the
predominant paradigm that AD pathology is driven by proin-
flammatory factors, our data support an alternative mechanism
for neuronal death in AD. We suggest that immune suppression
and arginine catabolism lead to a loss of arginine, a critical
semiessential amino acid, and this nutrient deprivation is fol-
lowed by cell death. This is a novel and potentially critical mech-
anism that may explain the temporal and spatial induction of the
slow and persistent loss of neurons in humans with AD.
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